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CHAPTER I 

INTRODUCTION 

I n  order  for man t o  explore  the  many chal lenges of outer  space,  

it is necessary f o r  both man and s c i e n t i f i c  equipment t o  be t ransported 

t o  the  a reas  of i n t e r e s t .  This i s  poss ib le  through the  combined e f f o r t s  

and s k i l l s  of t he  many engineering and o ther  s c i e n t i f i c  f i e l d s .  A l a rge  

space boos te r ,  such as t h a t  shown i n  F igure  1, must conta in  a l l  t h e  

necessary equipment f o r  accurate  cont ro l  and guidance t o  t h e  predeter- 

mined des t ina t ion .  This i s  by no  means a s imple  requirement and must 

involve a tremendaus amount of complex equipment. The equipment w i l l  

normally include more than one onboard computer t o  solve the many equat ions 

on a vast number of veh ic l e  parameters,  many of which are changing w i t h  

time. 

One of the more important closed loop systems necessary for 

guiding and c o n t r o l l i n g  t h e  space booster is  t h e  t h r u s t  vector cont ro l  

("VC) system. 

vec to r  t o  some commanded pos i t ion .  The t h r u s t  vec tor  i s  the  amount of 

f o r c e  generated by an engine,  or a c l u s t e r  of engines ,  f o r  t h e  purpose 

of l i f t i n g  t h e  boost veh ic l e  and i t s  pay load t o  i t s  des t ina t ion .  The 

t h r u s t  of an engine is usua l ly  h e l d  constant  regard less  of the  gimbal 

pos i t i on .  

bear ing  which is designed t o  have the engine t h r u s t  pivot  about the cen te r  

of t h e  bearing. If t h e  geometric center  l i n e  of the  engine is var ied 

The ob jec t ive  of t h i s  subsystem is t o  pos i t i on  t h e  t h r u s t  

The engines are mounted t o  the  veh ic l e  s t a g e  through a gimbal 

1 
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-- 

Figure 1. Space booster. 
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about t h i s  gimbal c e n t e r ,  it w i l l  move w i t h  i t  t h e  a c t u a l  t h r u s t  vec tor  

of the engine. 

of t h e  vehic le  can produce a l a rge  turning moment about the  cen te r  of 

inass of t he  vehic le .  T h i s  mauent is used t o  determine the  augular  posi- 

t i o n  of the  veh ic l e  and thereby f i x i n g  i ts  a t t i t u d e .  

It  can be seen from Figure  1 t h a t  a f o r c e  a t  the  a f t  pa r t  

Most space boosters  have more than one s t age  s ince  it is convenient 

t o  d iscard  the  dead weight of the  fue l  tanks when they have been depleted.  

Sane of t hese  stages may have a cluster of engines while  o thers  may 

r equ i r e  only one. A c l u s t e r  of engines might be arranged i n  a pa t t e rn  

such as t h a t  i n  F igure  2.  There may be one or more engines f ixed  i n  the  

cen te r  p o s i t i o n ,  which a re  usua l ly  not gimballed f o r  t h r u s t  vec to r  con- 

t r o l .  The engines t h a t  a r e  used t o  change the d i r e c t i o n  of t h e  r e s u l t a n t  

t h r u s t  vec tor  have two ac tua to r s  per engine mounted a t  90 degrees t o  each 

o ther .  

computer which has sca led  the individual  s i g n a l s  so t h a t  t he  veh ic l e  can 

be con t ro l l ed  i n  p i t c h ,  yaw, and r o l l .  

These ac tua to r s  are posit ioned by a command from t he  con t ro l  

The design of a t h r u s t  vector  con t ro l  system must be s t a r t e d  early 

i n  a veh ic l e  program. 

later t h a t  many e s s e n t i a l  parameters of t h e  TVC come from other  p a r t s  of 

the  s t a g e ,  The a t t a c h  poin ts  and the sp r ing  r a t e  K of t h e  veh ic l e  s t age  

s t r u c t u r e  can a f f e c t  the  s t a b i l i t y  of t h e  TVC system. 

t h e  s t a g e  s t r u c t u r e  and the  engine is not  designed from c o n s t r a i n t s  of 

t he  TVC system. 

can get and making t h e  system perform rega rd le s s  of t he  parameters 

I t  can be seen i n  Figure 3 and w i l l  be more obvious 

V 

As a general  r u l e  

The cont ro l  engineer is faced with accept ing what he 
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Figure 2 .  Engine c luster .  



5 

STAGE 

Figure 3.  Single engine stage.  
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afforded him. It is t r u e ,  huwever, t h a t  the  bandwidth of t h e  TVC system 

is  f i x e d ,  t o  a la rge  e x t e n t ,  by the parameters of t h e  s t age  s t r u c t u r e  

and the  engine. 

The TVC design engineer w i l l  u sua l ly  be given a performance 

requirement from t h e  veh ic l e  s tage  closed loop. The TVC system is 

expected t o  con t r ibu te  only a small p a r t  of the  veh ic l e  loop phase lag.  

I t  is also expected t o  have a bandwidth t h a t  i s  l a rge  with r e spec t  t o  

t h a t  of t h e  vehicle closed loop, The amplitude r a t i o  of the  TVC system 

is  expected t o  be r e l a t i v e l y  f l a t  throughout t h e  bandwidth of the  

vehic le .  

The design engineer is faced w i t h  many e a r l y  dec is ions  and must 

con t inua l ly  monitor the  veh ic l e  development changes. 

information loop on a l l  design changes of the  engine,  the s t age  s t r u c t u r e ,  

and t h e  veh ic l e  mission requirements. Some of the  f a c t o r s  t h a t  inf luence 

the  des ign  are l i s t e d  and discussed below: 

A. S t a t i c  Loads on Actuator 

He must be i n  t h e  

1. 

2. 

3. 

4. 

5 ,  

6 .  

7. 

Aerodynamic loading on an engine moving i n t o  an a i r  stream. 

Accelerat ion fo rces  on the engine i f  the  C.G. i s  not on 

t h e  geometric cen te r  l i n e  of t h e  engine. 

Moments on the  engine due t o  turning rates of the  vehic le .  

Forces due t o  l a t e r a l  acce le ra t ions  of t h e  veh ic l e .  

F r i c t i o n  fo rces  on t h e  engine and ac tua to r  moving pa r t s .  

Engine heat sh i e ld  loads. 

Engine duct loads. 
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8 .  The t h r u s t  vector  l a t e r a l  o f f s e t  from the  gimbal center .  

9. Loads due t o  choked a i r  flow between the  engines i n  a 

mu1 t i-eng ine c onf igura t ion. 

A l l  these  f a c t o r s  must be considered i n  determining the maximum f o r c e  

c a p a b i l i t y  of an ac tua to r .  The maximum f o r c e  is  a very important design 

parameter because it w i l l  a f f e c t  t h e  weight and c o s t  of t h e  u n i t .  The 

hydraul ic  pressure must be kept within the  s t a t e  of the art  on pumps, 

accumulators, reservoirs f l e x  hoses, f i t t i n g s ,  etc. Once t h e  pressure  

has been determined, t he  p is ton  area is  also f ixed. The maximum f o r c e  

t h a t  can be developed is the  pis ton area times t h e  supply pressure.  

B. Veloci ty  

When it has been determined haw f a s t  t h e  veh ic l e  must be capable 

of tu rn ing  f o r  s t a b i l i t y  reasons,  the maximum v e l o c i t y  of t h e  ac tua to r  

can be evaluated. 

f o r  a given veh ic l e  f l i g h t .  

a mult i -s tage vehic le .  

necessary t o  determine t h i s  duty cycle.  

engineer  enough information t o  determine t h e  m a x i m u m  volume of an accu- 

mulator ,  and the  r a t e  of the  ac tua tor  p i s ton .  He may w a n t  to include 

s a f e t y  f a c t o r s  , cons i s t an t  w i t h  good des ign ,  i n  making h i s  f i n a l  dec is ion  

on t h e  maximum design v e l o c i t y  of the TVC system. 

A duty cyc le  can be formulated f o r  the w o r s t  c a r d i t i o n s  

T h i s  is u s u a l l y  a f t e r  s t age  separa t ion  f o r  

A de t a i l ed  eva lua t ion  of worse condi t ions  may be 

T h i s  w i l l  f u r n i s h  the  con t ro l  

C. Maximum Actuator Stroke 

Once the  a t t a c h  poin ts  have been located on the  engine and the  

maximum angular d e f l e c t i o n  of the  engine has been determined one can 
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s i z e  the maximum s t roke  required f o r  ac tua tors .  The maximum s t roke  and 

the  duty cyc le  of t h e  ac tua to r s  enable one t o  determine the  required 

f l u i d  flow f o r  the system. The f lu id  supply system can now be designed 

for the t h r u s t  vec tor  cont ro l  system. The maximum s t roke  plays a l a rge  

p a r t  i n  t h e  ove ra l l  envelops dimension f o r  the  ac tua tor .  One must make 

the  dec is ions  e a r l y  i n  a veh ic l e  development program i n  order t o  assure  

t h a t  s u f f i c i e n t  space has been a l loca ted  f o r  the ac tua to r  and r e l a t e d  

equipment . 
The purpose of t h i s  research is  t o  develop a mathematical model 

f o r  a space veh ic l e  t h r u s t  vec to r  cont ro l  system and t o  demonstrate how 

it can be used i n  designing a 'IVC system. 

To f a c i l i t a t e  t h e  presenta t ion ,  a l i s t  of symbols is given i n  the  

f ol 1 owing. 

SYMBOL DJE I N I T I  ON U N I T  - 
KaGl 

v 2  

HG3 - 
A 

Amp1 i f  ier Transfer  Fun? t ion 

Servo Valve Ttansf er  Function 

Actuator Transfer  Function 

3 i n  /see 
mA 

+ i n  /see 

Reflected Load Transfer Function deg 
G4 deg 

G5 

G6 

Load Transfer  Function 

Closed Loop Transfer Function of p /p P C  

Transfer  Function of p,/p, 
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FO 

KO 

I 

€ 

Open Loop Transfer Function 

Open Loop Gain 1 
see 
- 

Valve Current 

Error  Signal  

3 i n  - Valve Flow Output sec  

I d e a l  P i s ton  Position--p P i s ton  Unloaded 

Actual P i s t o n  Pos i t i on ;  a l s o ,  Actuator 

Pos i t i on  Feedback 

Engine Pos i t i on  

Cammand P o s i t i o n  

1 
see 
- Laplace Operator 

aeg 
i n  H 

f 

Conversion Fac tor  

Frequency Hertz 

3 i n  Total  Plow to Hydraulic Amplifier see 

3 i n  Flow t o  Valve Spool Ends 
sec 

3 i n  
see 
- 92 

a 

c1 

Flow through Valve Nozzle 

Flapper  Angular Pos i t ion  

Conver s ion Constant 

Deg 

2 i n  



c2 

p1 

p2 

p1 

p2 

a 

A’ 

pS 

b 

X 

K e 

K 
V 

yr 

KO 

R 

8l c2 

Ql 

Conversion Constant 

Spool End Pressure 

Spool End Pressure 

10 

#/Deg. 

#/in 2 

2 
#/in 

2 
Actuator P is ton  Pressure #/ in  

2 
Actuator P i s ton  Pressure #/ in  

Spool End Area 

Actuator P i s t o n  Area 

System Supply Pressure 

Servo Valve Spool Damping 

Valve Spool Pos i t ion  

Erg i ne  Spring Constant 

Vehicle Spring Constant 

2 in  

2 i n  

#/in 
2 

#/r od/s e c 

i n  

#/in 

#/in 

Actuatar  Spring Constant #/in 

Actuator Load Spring Constant 

‘t 
r, + 

Total  Spring Constant 

#/ in  

#/ in  

Hydraul i c  O i l  Spring Constant #/in 

System Low Return Pressure  #/in 

Control P o r t s  from Servo Valve --- 
3 

i n  - 
1 sec Shaping Network Flow from C Caused by P 2 > P  
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Ql 8r 02 

K 

cO 

A 

B 

TE 

T m 

T f t  

'n 

TW 

k 

are equal for the  same value of 0 

Shaping Network Spring Rate 

Shaping Network Spool Displacement 

Shaping Network Spool Displacement 

Mass of Spool i n  Shaping Network 

Shaping Network O r i f  ice Coeff ic ien t  

Shaping Network Spool End Area 

Shaping N e t w o r k  Damping C o e f  f i c  I en t  

Torque Caused by Electrical Current 

Torque Caused by Permanent Magnets 

Torque Caused by Flexure Tube Spring 

Torque Caused by Nozzle Pressure  

Torque Caused by Feedback Wire 

Feedback Spring Constant 

#/in 

in.  

in.  

s lugs  

#-$@C 

i n  
- 

5 

2 i n  

#-see 
rad. 
- 
# - i n  

# - i n  

# - i n  

# - i n  

# - in 
#/in 



CHAPTER I1 

TORQUE MOTOR 

The torque motor is the un i t  t h a t  converts  the  e l e c t r i c  s igna l  

t o  a mechanical s i g n a l  which i n  turn produces the  hydraul ic  s igna l .  

Because of the  i n t e r f a c e  between t h e  hydraul ic  system and the  e l e c t r i c a l  

con t ro l  computer, it is  a v i t a l  l i nk  i n  the t h r u s t  vec tor  con t ro l  system. 

There are many arrangements that  one may consider f o r  t h e  torque 

motor. The bes t  may depend on a s p e c i f i c  appl ica t ion .  The one t h a t  

w i l l  be considered here is  shown i n  Figure 4. 

The s ides  a r e  permanent magnets arranged so t h a t  t h e  poles will 

be located as shown i n  the  Figure 5. The top  of t h e  torque motor i s  

s o f t  i ron  or  any material s u i t a b l e  t o  conta in  magnetic f lux .  A s i d e  

view is shown i n  F igure  6. 

i n  the cen te r  of t h e  a i r  gap as shown and held i n  place by a f l e x u r e  

tuba’ with a sp r ing  r a t e  s u i t a b l e  t o  maintain a n u l l  pos i t i on  a t  zero 

e l e c t r i c a l  cu r ren t .  A small e l e c t r i c a l  s igna l  i n  the  milliampere range, 

appl ied  t o  t h e  c o i l  of t h e  torque motor, w i l l  cause forces  i n  t h e  

The armature of the torque motor is spaced 

permanent magnetic f i e l d  t o  repel and r e t r a c t .  A r e s u l t i n g  angular 

pos i t i on  w i l l  occur t h a t  i s  proport ional  t o  t h e  magnitude of t he  e l e c t r i c a l  

s i g n a l .  

A f l appe r  w i t h  one end s e t t i n g  i n  between two streams of hydraul ic  

f l u i d ,  is connected t o  t h e  bottom of t h e  armature. The flow from the  

two p o r t s  and the  nozzle  pressures  a r e  a f f ec t ed  by the  pos i t i on  of t h e  

12 



13 

Figure 4. Torque motor armature and magnets. 
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Figure 5.  Side view of torque motor. 



15 

1 1 

Figure 6. Torque motor schematic. 
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As t he  f l a p p e r  angle a increases from t he  n u l l  p o s i t i o n ,  the  

n 

f l appe r .  

pressure P aga ins t  the  f l appe r  increases ,  thus causing a r e s i s t i n g  

torque t o  the  e l e c t r i c a l  cur ren t  torque. One must be ca re fu l  not t o  

space t h e  nozzle parameters so t ha t  the  " f la t  plate"  c h a r a c t e r i s t i c s  (5)* 

of t he  f l appe r  tend t o  p u l l  the  f lapper  toward the  nozzle instead of 

r epe l l i ng .  This c h a r a c t e r i s t i c  i s  a pos i t i ve  feedback term. When it  

occurs ,  i t  is des t ab i l i z ing .  The constant of p ropor t iona l i t y  K 

between the  angular pos i t i on  and t h e  nozzle torque w i l l  have a negat ive 

3 

s ign  associated with it. 

The f l appe r  and armature 

S Z t t i G g  tSe resultant r[?rqn$! t r ?  

T E + T  - + T  + T w  m T f t  n 

arrangement is used as a f r e e  body. 

Z O , ~ " ,  r r i w o ~  
0"'- 

Assuming the  proport ional  r e l a t ionsh ips  

TE = K l i  Y 

T = R a  m 2  

T n = K u  

Y 

3 

= K u  

9 

T f t  4 9 

and 

T = K5a 
W 9 

where K1, K 2 ,  K J Y  K and K a r e  r e a l  cons t an t s ,  one has 4 5 

K i = (K4 + Kg + K - K2)u 1 5 

* 
Numbers i n  parentheses represent s i e i l a r l y  Rumbered e n t r i e s  i n  

the  " L i s t  of References -'' 
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Theref o r e ,  

a Kl T =  
1 (K4 + K3 + K - K2) 5 

Design feedback w i r e  so t h a t  t he  torque caused by the spr ing  

constant  K and the angular displacement a i s  neglectable .  5 

a K1 - =  
(K + K4 - K2> 3 i 

The des i r ed  angular pos i t i on  is  s h a m  t o  be proport ional  t o  the va lue  of 

the  e l e c t r i c a l  cur ren t .  

I f  the  ampl i f ie r  is a vol tage source then t h e  # block must be 

..---?..-&..A /w:-..-- -\ h- --:?I G v a a u a L u u  \r Apjurc 1 1 .  wI11: WAIL g ~ t  s tack G X G ~  geiiaru"L6 ~ i l y  t i m e  i h e  

torque motor armature moves because it is s e t t i n g  i n  a magnetic f i e l d .  

This can be a source of no i se ,  e s p e c i a l l y  i f  some of the  mechanical 

resonant  f requencies  are i n  the  bandpass of t h e  ampl i f ie r .  



CHAPTER I11 

SERVO VALVE 

The torque motor w i l l  produce an angle a proport ional  t o  the  

cu r ren t  through the  c o i l  windings. For a given non-zero angle ,  t he  

f l appe r  w i l l  be c l o s e r  t o  one nozzle than the  other .  A continuous flow 

of hydraul ic  f l u i d  is  moving from the nozzles t o  the  low pressure  a rea  

surrounding the  f lapper .  The nozzle t h a t  is c l o s e s t  t o  t he  f l a p p e r  w i l l  

have an increase in  pressure thereby r e s t r i c t i n g  the  f l u i d  flow. The 

f l u i d  flow q ,  s ee  Figure 8 ,  w i l l  remain constant  and is equal t o  q 

Since a2 has decreased because of the high pressure, caused at the 

f l a p p e r ,  t h e  value q must increase.  Anytime the  value of q is  g r e a t e r  

than zero ,  the  valve spool must move. The spool pos i t i on  X w i l l  change 

t o  increase  t h e  volume t o  provide space f o r  t h e  f l c rw  of q The spool 

w i l l  continue t o  move and take w i t h  it one end of t he  feedback spr ing.  

As X increases  the  f l a p p e r  w i l l  be forced away f ran the.pozzle  and the  

1 + 42'  

1 1 

1' 

pressure  w i l l  drop causing q2 t o  increase,  

decrease and when it has dropped t o  zero ,  the  spool w i l l  cane t o  a rest 

pos i t i on .  Since the  e l e c t r i c a l  torque is  s t i l l  present  at t h e  torque 

motor,  it is being nul led out by the torque caused by the  spr ing  constan'*: 

times t h e  displacement X of the  spool. 

As q2 increases ,  q w i l l  1 

The e l e c t r i c a l  cur ren t  may be brought t o  zero  and the  e l e c t r i c a l  

to rque  w i l l  be removed. When t h i s  happens, the  f l a p p e r  w i l l  move t o  the  

oppos i te  nozzle and r a i s e  the  p re s su re  causing q3 t o  decrease.  As q3 
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decreases ,  the  va lues  of q w i l l  increase causing the  spool t o  move i n  

the  -X d i rec t ion .  As the  spool movesp it w i l l  r epos i t i on  t h e  f l appe r  

t o  the  n u l l  pos i t i on ,  

4 

The spool w i l l  again assume a rest pos i t ion .  

It  can be seen, i n  Figure 8 ,  t h a t  f o r  each displacement X t he  

value spool w i l l  open a port  permit t ing hydraul ic  f l u i d  t o  f low from the  

high pressure region P t o  one of the cont ro l  ports C t o  C2. For a 

p o s i t i v e  value of X ,  f l u i d  w i l l  flow t o  the  C por t  and t o  the  ac tua to r .  

This i s  usua l ly  a l a rge  quan t i ty  of f low compared t o  other  flows con- 

s idered  up t o  now. It has been es tab l i shed  t h a t  t he  s t a t i c  value of X 

is proport ional  t o  the  valve current .  This is a good f e a t u r e ,  however, 

t he  flow t o  the ac tua to r  i s  the  desired orxtput of the  servo valve- The 

value of f l u i d  flow through an o r i f i c e ,  s ee  Figure 9 ,  is not proport ional  

t o  displacement only., The f low is  a func t ion  of the  d i f f e r e n t i a l  p ressure  

ac ross  the  o r i f i c e .  The value of the pressure drsp  is a func t ion  of t he  

o r i f i c e  c o e f f i c i e n t  - which is  a v a r i a b l e  i n  t h i s  case - not a constant .  

Figure 10 shows the  r e l a t ionsh ip  between t h e  flow rate Q and the  d i f f e r -  

e n t i a l  pressure AP. 

S 1 

2 

I f  one r e s t r i c t s  the  valve t o  small values  of 

f low,  the  r e l a t i o n s h i p  i s  almost a s t r a i g h t  l i n e ,  (See Figure 11.) 

The flow t o  the  ac tua to r  is a l s o  a func t ion  of the  down stream 

pressures ,  The p res su re ,  or d i f f e r e n t i a l  p re s su rep  across  the  ac tua to r  

w i l l  determine the  amount of f l u i d  f low.  This is a r e s u l t  of t he  f l u i d  

compress ib i l i ty ,  I f  t h e  f l u i d  w a s  incompressible the  displacement of 

the  a c t u a t o r  p i s ton  would be an exact i n t e g r a l  of t he  flow. A s e t  of 

curves ind ica t ing  the  f low c h a r a c t e r i s t i c s  of t he  servo valve may be 
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pS DIFFERENTIAL PRESSURE (OR FORCE) 

Figure 10. Servo valve f l a w  curves. 
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P 

C 

Q = K m  r 
Q = FLOW 

Figure 11. Sharp edge o r i f i c e  curves. 
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obtained by observing the three parameters Q ,  AP , and t h e  va lve  cur ren t  

i. A set of curves i s  shown i n  Figure 10. 

The p i s ton  v e l o c i t y  is obtained by d iv id ing  t h e  valve flow by the  

ac tua to r  p i s t o n  area. 

a l s o  be shown on the  same graph. 

formation t o  design t h e  flow requirements of t h e  valve but  i s  not the  

f u l l  p i c tu re  of these  r e l a t ionsh ips .  A more complete p i c tu re  is shown 

i n  F igure  1 2 ,  a four quadrant p i c tu re  of these c h a r a c t e r i s t i c s .  The 

negat ive flow of the  valve takes i n t o  account t h e  d i r e c t i o n  of flow 

through t h e  C and C po r t s  t o  the actuator .  This  f i g u r e  a l s o  ind ica t e s  

the  f l o w  r e i a t i o n s h i p  if the l a d  caiises 8 przssara t hz t  in o?lt of phase 

with t h e  valve s igna l .  This can cause the  d i f f e r e n t i a l  p ressure  of the  

a c t u a t o r  t o  be l a r g e r  than t h a t  of the  system supply. This should not 

happen i n  p r a c t i c e ,  however, the  curves can be produced by operat ing t h e  

hardware i n  the  laboratory.  

The torque,  or t h e  ava i l ab le  f o r c e  c a p a b i l i t y ,  can 

T h i s  curve can g ive  the  necessary in- 

1 2 

The r e l a t i o n s h i p  of f l u i d  flow t o  valve cur ren t  and the  d i f f e r e n t i a l  

p ressure  is a nonl inear  r e l a t ionsh ip ,  However, i f  one holds the  d i f f e r -  

e n t i a l  pressure constant  and p l o t s  a curve of t h e  flow vs curren t  from 

the  curves of F igure  1 0 ,  one obtains a fami ly  of curves as those i n  

F igure  13. 

s t r a i g h t  l i n e  is the  f low ga in  of the  valve and is  a l a rge  p a r t  of t he  

open loop gain.  One must choose the l a r g e s t  s l o p  i n  determining t h e  

open loop ga in  f o r  s i z i n g  the t h r u s t  v e s t o r  cont ro l  system. This w i l l  

a lso be t h e  c o r r e c t  value for small s igna l  operat ion.  

This i s  the  most useful  s e t  of curves s ince  the  s lope of the 
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0 

VALVE CURRENT 

Figure 13. Linear flow curves. 
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I n  devel oping t h e  mathernat i c a l  r e l a t i o n s h i p s  of t he  valve,  one 

needs t o  s impl i fy  the  block diagram of Figure 7, page 18. 

block diagram would be t o  s ta r t  with t h a t  of Figure 14. This f i g u r e  

g ives  a p i c t u r e  of t he  s igna l  flow paths  and the  p a r t s  of t h e  system 

t h a t  operate on the  s igna ls .  I t  i s  d i f f i c u l t  t o  see the parameter re- 

l a t i o n s h i p  of t h e  valve f r a n  t h i s  f i gu re .  

page 20,  and develop f o r c e  and f law equat ions.  

A more usefu l  

One can s ta r t  with Figure 8 ,  

Considering the  schematic i n  F igure  8 and assuming f law con t inu i ty ,  

it can be s t a t e d  t h a t  q = q1 + q2. Since a pipe o r  an o r i f i c e  has sane 

r e s i s t a n c e  t o  f l u i d  f law,  there  w i l l  be a pressure  drop along t h e  tube. 

=.is C8T: he expressed e3 

C1(PS - P1) = 9.2 

For small changes i n  f l u i d  flaw c1 is  approximately a constant .  

i s  a v a l i d  assumption s ince  q is small and q 

i t s  maximum value q. 

t h e  nozzle  and the  f lapper .  

t o  f l o w  and is expressed 

This 

i s  never zero  and has a s  2 

A l s o ,  q2 i s  a func t ion  of t he  o r i f i c e  caused by 

The f lapper  pos i t i on  a causes a r e s t r i c t i o n  

( 4) 4 2 = c a  2 

S e t t i n g  the  two equations equal 

c+ps - pl> = c2a 

and 

The r e l a t i o n s h i p  of f law t o  t h e  f lapper  angle -a is s i m i l a r l y  derived 
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Figure 14. Simplified block diagram. 
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1 

C 

C 
- P* - Ps + a -  

30 

(6) 

By taking t h e  d i f f e rence  of Equations (5) and (61, one can e l imina te  p, 

Now it is more convenient t o  treat  t h e  spool a s  a f r e e  body and 

sum a l l  t h e  e s s e n t i a l  fo rces  ac t ing  on t h i s  body, see Figure 15. One 

can neglect  the  value of t h e  f o r c e  caused by the  feedback spr ing kx. 

This spr ing  is not  used t o  n u l l  t he  valve spool however, i t  i s  used t o  

r e p o s i t i o n  t h e  f l appe r  which changes the  f law which d o e s  nu l l  the spool. 

The e s s e n t i a l  f o r c e s  on the  f r e e  body diagram a r e  a s  follows: 

Taking 

term, 

torque 

apl = mj; + aP2 + bri- . 
Laplace transform w i t h  zero  i n i t i a l  condi t ion and t ransposing one 

The t r a n s f e r  func t ion  between the  valve spool pos i t i on  X and the  

motor f l appe r  pos i t i on  a is obtained by s u b s t i t u t i n g  Equation (7) 

i n t o  Equation ( 8 )  and rearranging t h e  expression.  

2 

1 

C 

C 
-2 - a 

X 
a s(ms + b) 
- =  

The servo-valve can now be represented by the  block diagram shown 

i n  F igure  16. The flow from the  valve is proport ional  t o  t h e  valve spool 

pos it ion .  
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P a  1 -b m 

Figure 15. Free body diagram of servo valve spool. 
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Figure 16. Servo valve block diagram. 



CHAPTER IV 

LOAD AND REFLECTED LOAD DYNAMICS 

The most d i f f i c u l t  p a r t  of t h e  TVC design problem is t h e  f a c t  t h a t  

a l a r g e  spr ing mass load is  outs ide of t h e  closed loop system. When not 

con t ro l l ed  by an ac tua t ion  system, t h i s  l i g h t l y  damped, resonant ,  second 

order  system, i f  e x c i t e d ,  r i ngs  a t  i ts  na tu ra l  frequency, 

The engine gimbal system is  more conveniently d e l t  wi th  i f  t h e  

system is  converted t o  an equivalent one shown in  Figure 17. The mass i n  

t h i s  f i g u r e  i s  the  equivalent  mass of t h e  engine converted t o  l i n e a r  

motion. 

pos i t i on  would be pi .  

the t r u e  p i s ton  pos i t i on  p 

is located i n  a favorable  pos i t i on  t o  measure p 

around the  a c t u a t o r ,  servo-valve, and torque motor. 

combination of t h e  compliances of the engine,  the  veh ic l e  s t age  s t r u c t u r e ,  

and those  mechanical p a r t s  of t he  ac tua tor  not  absorbed i n t o  K The 

spr ings  are not  l i n e a r  but  can be approximated as such for small s igna l s .  

If the  hydraul ic  f l u i d  was not  compressible,  the  ac tua to r  piston 

However, the  hydraul ic  f l u i d  i s  compressible and 

i s  d i f f e r e n t  from p . .  A feedback potentiometer P 1 

P 
and c lose  the  loop 

The value of 5 is a 

0' 

Since the  load is outs ide  the closed loop, one can see t h a t  it 

would be des i r ab le  t o  d r ive  it w i t h  a system t h a t  has a notch f i l t e r  

loca ted  a t  the  na tu ra l  frequency of t he  load. This  is what is  expected 

of t h e  con t ro l s  engineer.  It  tu rns  out t h a t  the system has a na tu ra l  

b u i l t - i n  notch i f  one chooses a hydraulic system. This w i l l  be c l e a r  i n  

de r iva t ion  of t he  system equations.  

33 
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One can g e t  a p i c tu re  of the problem if  t he  spr ing  r a t e  of t he  

is assumed t o  be i n f i n i t e l y  s t i f f  ., o i l  K 

C 

load ,  there  w i l l  be a displacement a t  fl . However, and p w i l l  not 

move so t he re  w i l l  be no feedback s igna l .  The spr ing  mass system w i l l  

continue t o  r i n g  at i t s  na tu ra l  frequency u n t i l  t h e  dashpot "B" has 

d i s s ipa t ed  the  e x e r t a t i o n  energy. Since the  ac tua l  t h r u s t  vec tor  i s  

posi t ioned by the  geometry of the  engine,  it i s  apparent t h a t  it w i l l  

a l s o  r i n g  a t  the  na tu ra l  frequency of the  load. 

I f  t he  servo-valve has po r t s  
0 

and C2 closed off (see Figure 1 3 ,  and a dis turbance i s  caused a t  t he  
1 

e p i  P 

Now i f  one permi ts  the  value of K t o  be a f i n i t e  va lue ,  then f o r  
0 

a given force, appl ied t o  the  engine.  the  spr ing  w i l l  be compressed and 

cause a p displacement. This w i l l  cause a feedback s igna l  t o  be gen- 

e ra t ed  and open t h e  servo-valve. The valve w i l l  permi t  f low t o  reduce 

the  displacement. One can not  obtain enough damping as a r e s u l t  of t h i s  

opera t ion ,  however, it does cause a notch f i l t e r  t o  appear i n  the equa- 

t i o n s .  The necessary damping or a t tenuat ion  of the  notch f i l t e r  i s  

obtained by the  Dynamic Shaping Network. 

P 

In  order  t o  der ive the equations of motion and obtain workable 

t r a n s f e r  f u n c t i o n s ,  consider  the  sketch i n  Figure 17. If one d iv ides  

t h i s  f i g u r e  i n t o  th ree  f r e e  body diagrams and sum a l l  t he  e s s e n t i a l  

f o r c e s ,  t h ree  t r a n s f e r  func t ions  are obtained f o r  the load p /p , t he  

r e f l e c t e d  load dynamics p /p. and p /Q. One can observe t h a t  the  

numerator term of p / p .  i s  exac t ly  equal to the  denominator term of 

e P  

P I  P 

P I  
Since p /p has about 20 db of ga in  a t  t he  resonant frequency, 

pe'pp e P  
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one would expect fl / p .  t o  cont r ibu te  about the same amount of a t tenuat ion  
P 1  

a t  the  same frequency. This is  exac t ly  what w i l l  happen i f  one can 

separa te  the  na tu ra l  frequency of the denominator from t h a t  of t he  

numerator terms of fl / p . .  

t r a n s f e r  func t ion  is shown i n  Figure 18. 

The frequency response r e l a t i o n s h i p  of t h i s  
P I  

From t he  free body diagrams shown i n  Figures  19 ,  20 and 21, t h e  

fol lowing th ree  equations can be obtained, 

and 

In  mat r ix  no ta t ion ,  

0 
K [-I 0 

-K 
0 

K + KL 
0 

-5 

The determinant of t h e  system matrix i s  

-K 
0 

r e  spec t i v e l  y . 

0 

-5 
m s 2  + B S  + K  e 

0 

K + KL 
0 0 

lo -Kt m s2 + Bs + \] 
e 

(14) 

and f?,, y i e lds  i *  'p Solving Equation (13) f o r  f? 
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FREQUENCY I N  HERTZ 

Figure 18. Amplitude response of ref lected  load. 
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Figure 19. Actuator piston free body diagram. 
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Figure 20. Actuator piston rod free  body diagram. 



Figure 21. Engine f ree  body diagram. 



and 

Thus 

im5 + Bs + 3 0 
B K 
9 =  
p i  ' o + %  m s + B s + K T  

where 

K K  

and 

Noting that 

the re lat ion between the piston and the f l a w  rate is  

2 
+ B s + m s  

0 
8 K 

(8: + Bs + 
9 =  * 

A (KO + 5) 

41 

(18) 

(20) 

Examining Equations (18)  and (191 ,  reveals that fl /f3. always 
P =  

posses a numerator identical t o  the denominator of pe/B . Thus ',/pi P 
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has a natural bu i l t - in  notch as claimed at the beginning of t h i s  Chapter. 

The hydraulic actuator has the e f f ec t  of replacing a pair of highly 

resonant poles of the load by a pair of highly damped poles of the over- 

a l l  system. 



CHAPTER V 

DYNAMIC SHAPING NETWORK 

The dynamic shaping network f o r  t he  ac tua t ion  system i s  made 

e n t i r e l y  of mechanical components. A schematic of t he  network is  shown 

i n  Figure 22.  This network is  placed between a conventional f low con- 

t r o l  servo va lve  and the  hydraul ic  ac tua tor ;  

connecting p a r t s  of the  servo  valve and ac tua tor .  The pressure developed 

a t  t he  faces  of the ac tua to r  p i s ton  is  designated P 

assumed t o  be uniform across  the  p is ton  f a c e  and of t h e  same values  a t  

C, and C,. The d i f f e r e n t i a l  pressure developed by t h e  ac tua to r  is 

(P, - P2]. 

and, C and C2 a r e  the  
1 

and P2. It is  
1 

I L 

The s ign  gives  an ind ica t ion  of the d i r e c t i o n  of the h ighes t  

pressure.  

The equat ions are developed by summing a l l  t h e  fo rces  ac t ing  on a 

" f r ee  body" diagram and s e t t i n g  them equal t o  zero.  A f r e e  body of the  

elements is  shown i n  Figure 23. . 
If the  mechanical components of the  shaping network a re  arranged 

.I 

i n  t he  same manner as those shown schematically i n  Figure 22, one can 

obta in  a de r iva t ive  of the  d i f f e r e n t i a l  pressure (P, - Pl ) .  

system i s  i n  a state of equi l ibr ium and the  pressure P2 i s  caused t o  

increase ,  it w i l l  cause a displacement Qwhich is equal t o  (P 

W r i n g  the  time tha t  Q i s  changing, there w i l l  be an o i l  f low rate Q 

If t h i s  r a t e  i s  la rge  enough, i t  w i l l  cause the  o r i f  i ce  Co t o  look  as 

though it is  blocked, and Q, w i l l  be e s s e n t i a l l y  0. 

If the  

- P3)A/K. 2 

4' 

Therefore,  Q, w i l l  

43 
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Figure 22. Shaping network schematic. 
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Figure 23. Shaping network free body diagram. 
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approximately equal t o  Q 

equal t o  A(PJ - P1)/L 
w i l l  open a po r t  which permi ts  Q 

p o r t  R. When t h i s  happens, t he  pressure P w i l l  drop. This causes  the  

pressure t o  have a rate of change t h a t  i s  opposi te  i n  p o l a r i t y  t o  t h a t  

This w i l l  cause a displacement e which is  4' 

When e i s  in  t h e  minus d i r e c t i o n ,  the  spool 

t o  f law t o  the  l aw pressure r e t u r n  1 

2 

when i t  w a s  increas ing  and thereby closing the  po r t  caused by the  spool.  

If P is increased a b w e  t h a t  of P2, the  same operation occurs ,  
1 

but  i n  the  reverse  d i r ec t ion .  

It can be seen t h a t  regard less  of the l e v e l  of P and P2 the  
1 

spool displacement e w i l l  remain i n  t he  neu t r a l  posi t ion.  For a s t a t i c  

condi t ion 8 may be d isp laced ,  however, P, w i l l  equal P- and the farces 
3 1 

ac t ing  on the  spool f a r  0 , w i l l  be balanced and f l u i d  flow is possible .  

The f o r c e  Equation for t he  l e f t  spool is 

2 (P2 - P3)A = (K + BS + M1s 10 

For s u f f i c i e n t l y  small MI, a good approximation is 

A 
K + Bs 

- - 0 
p2 - p3 

(21) 

S i m i l a r l y ,  f o r  t h e  r i g h t  spool ,  one has 

2 
(P, - P1)A = (K + BS + M s ) 0 . 2 

For small M2, it becomes 

A 
( 2 2 )  - - 8 

P - P  K + Bs 3 1  

The l i n e a r i z e d  f o r c e  equation f o r  the  bu i l t - i n  o r i f i c e  i s  

P3 - P1 = CoQ 



47 

Using the  continuity Equation 

+ Q3 Q, = Q, 

and the relat ionship 

Q, = As$ 

and 

gives 

Eliminating (P3 - P,) from Equations (22) and (23), 

Zliminating P, from Equations (21) and (221, 
.J 

K + B s  K + B s  
A ' +  A 0 = P2 - PI 

In matrix form, 

A 

K + B s  C A S + -  0 K + B s  A ][:] K + Bs 
A 

CoAs 

(25) 

(26) 

Solving 

e 
p2 - p1 

Equation (26) for 8 , gives  

- 0 S 
-AC 

- 
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It is  des i r ab le  t o  approximate Equation (27) i n  a form having one s 

f a c t o r  i n  the  numerator and only one time cons tan t  i n  t h e  denominator. 

T h i s  can s a t i s f a c t o r i l y  be done i f  Equation (27) has two real poles ,  one 

a t  least t e n  times l a rge r  than the  other .  

Le t t i ng  

B2 

A2 
a = COB + - 9 

the  c h a r a c t e r i s t i c  Equation of Equation (27) becomes 

K2/A2 
C B + a P o  0 

Ka 
B C C ~ B  + a) 

= 

After s impl i f i ca t ion ,  one arrives a t  the fol lowing t w o  roo t s  

K 
1 B 

s = - -  

s = J b ,  * 
2 B 

where the factor i s  given by 

B 

B + 2 C A  x =  2 
0 

Thus Equation (27) may be w r i t t e n  as 

S 

2C0B + - 
- - e 

p2 - p1 

(28) 

(29) 

(30) 
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To separa te  the t w o  roo t s  t h e  desired amount, can be adjusted.  Notice 

t h a t  

t h a t  it w i l l  be l a r g e  compared t o  the system band width.  

b/< 1, s ince  B ,  C and A a re  a l l  pos i t i ve .  Also, 5 is s e t  so 
0 B 

I n  order t o  ad jus t  one can change t h e  value of C which i s  an 
0 

o r i f i c e  i n  the  hydraul ic  c i r c u i t .  

o ther  cons t r a in t s .  

p a r t  i n  determining the  s ize  of the p i s ton  area.  A l s o ,  the  l a r g e r  t h e  

value of K t h e  more f o r c e  w i l l  be required t o  obta in  a reasonable amount 

of e ; therefore, t h i s  w i l l  a l s o  he lp  t o  determine the  s i z e  of t h e  

area. 

The spool a rea  may be set due t o  

The contaminant small p a r t i c l e  s i z e  may play a l a rge  

A frequency response of a s a t i s f a c t o r y  network is shown i n  

Figure 24. 
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Figure 24. Frequency response of network. 
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CHAPTER VI 

SUMMARY 

The equat ions of motion f o r  the var ious components of t he  t h r u s t  

vec to r  cont ro l  system have been developed i n  the  preceding chapters.  The 

schematic of Figure 25 shows how these var ious subsystems combine t o  

form a TVC system. This p a r t i c u l a r  shaping network enables  one t o  design 

a system by t h e  use of conventional f low valves  and ac tua tors .  When it  

i s  poss ib le  t o  use hydraul ic  f l u i d ,  as the  working medium, one i s  afforded 

many advantages t h a t  are no t  ava i lab le  by other  ac tua t ion  systems. 

dynamic load shown by fl-/fl- i n  Figure 26 has approximately 20 db of ga in  
S Y  

a t  t h e  resonant frequency. The closed loop hydraul ic  system i s  shawn t o  

be p /fl and g ives  a considerable  amount of a t tenuat ion  a t  t h e  load 

resonant  frequency. The des i red  response of t h e  combined curves is shown 

as  pe/pc. 
s t a b l e  system. 

The 

P C  

One can see t h a t  t h i s  has the  response of a w e l l  cont ro l led  

For mult ip le  engine c o n t r o l ,  hydraul ic  system is  t h e  most v e r s a t i l e .  

In a multiengine con t ro l  system, it i s  d e s i r a b l e  from a hardware view- 

po in t ,  t o  design one TVC system t h a t  can be interchangeable  from engine 

t o  engine.  Because of t h e  tolerance used i n  manufacturing the  s tage  

s t r u c t u r e ,  the  engine,  torque motor, servo-valve , and the  a c t u a t o r s ,  it 

is d i f f i c u l t  t o  p r e d i c t  exac t ly  what t h e  resonant  frequency of t h e  load 

w i l l  be. 

ex ten t .  The na tu ra l  frequency of t h e  system used i n  Figure 26 was changed 

A hydraul ic  f l u i d  system w i l l  e l e v i a t e  t h i s  problem t o  a l a rge  

51 



R 

S 
P 

52 

F i g u r e  25, Schemat ic  of comple te  T.V.C.. 
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Figure 26,  System frequency response. 
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t o  new values  and the  curves of Figure 27 and Figure 2 8  were obtained. 

When the  load response changed, the TVC system notch changed t o  the  new 

value d i c t a t e d  by the  load. 

system w a s  not as much, the  notch frequency w a s  automatical ly  the  des i red  

one. This is caused by the  f a c t  t ha t  t h e  numerator term of the  r e f l e c t e d  

load has c o e f f i c i e n t s  t h a t  a r e  exac t ly  the  same as those of the  load. 

One can see by Figure 2 8  t h a t  the  response p /p e c  

although the  load response changed by severa l  Hertz. This i s  the  re- 

sponse t h a t  one i s  pr imar i ly  in te res ted  i n  s ince  it i s  t h a t  of t he  

a c t u a l  t h r u s t  vec tor .  

Although the  a t t enua t ion  of the closed loop 

changed only s l i g h t l y  

The mathematical models developed may be arranged i n t o  a block 

diagram such as t h a t  shown i n  Figure 29.  This i s  the  most convenient 

form t o  set up on an analog computer f o r  the  ease of parameter ad jus t -  

nent s . 
I f  one i s  t o  meet the  closed loop phase requirement of t he  TVC 

system, the  open loop again w i l l  make the  l a r g e s t  change i n  t h e  phase 

curve a t  l o w  frequencies .  However, when the  phase requirement i s  met 

the  amplitude r a t io  may not  be what one d e s i r e s .  

The set of curves i n  Figure 30 show some degree of adjustment 

ava i l ab le  by ad jus t ing  the  parameters i n  the  shaping network. One can 

nove the saddle ,  formed by the set of curves ,  up or down by ad jus t ing  

the  break frequency ( Y, 1. 

by ad jus t ing  the  ga in  of the  pressure feedback loop. The higher  f r e -  

quency phase l a g  w i l l  change but w i l l  remain r e l a t i v e l y  cons tan t  a t  low 

t requencies .  The da ta  i n  Figure 31 was taken from analog runs.  

K One can move from one curve t o  the  other  
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Figure 27. System response with load changes. 
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FREQUENCY I N  HERTZ 

Figure 30. R e s p o n s e  of system with pressure loop gain adjustment. 
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The TVC system presented here w i l l  not  so lve  a l l  ac tua t ion  prob- 

It does so lve  many and has much t o  o f f e r  f o r  l a rge  mass gimbal lems. 

systems. This dynamic shaping network i s  not the  only way one can 

mechanize the  required d i f f e r e n t i a l  equat ions ,  however, it does give 

sane l a t i t u d e  i n  choosing other  canponents of t h e  TVC system. 

Although the equat ions for the  servo-valve presented here a r e  

s u f f i c i e n t  for design and s i z i n g  the system, more work should be done 

t o  i s o l a t e  t roub le  spots. 

page 18 ,  should be evaluated mathematically t o  completely enable the  

design engineer t o  cope with any type  of unexpected in t e r f ace  problem. 

The individual  blocks presented i n  Figure 7 ,  
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APPENDIX A 

2(0.416)S + + + 
70.57 377 300 

EXAMPLE 

- 3 .  

This example w i l l  demonstrate t he  mathematical r e l a t ionsh ips  t h a t  

have been derived. The block diagram as shown i n  Figure 32 has been 

reduced t o  i t s  s implest  form. 

shown i n  Figure 33. 

The closed loop frequency response i s  

9.09 

0.53 
18.86 + 4 

v 2  
21.45 377 

HG3 2.82 
A 0.6 

- = -  

- 
G4 - 

+ + 

2(0.05)s 
80.38 ( 80.38) 

- 1 

80.38 

G5 - 
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Figure 32. System block diagram. 
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Figure 33- Engine frequency response. 
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A r o o t  locus p l o t  of t h i s  equat ion ,  which r e f l e c t s  the  v e r s a t i l i t y  

of t he  system as t h e  open loop gain is  v a r i e d ,  is shown i n  F igures  34 

and 35. 

After combining and simplifying the  blocks i n  Figure 32, t he  two 

blocks i n  Figure 36 r e s u l t ,  Where 

r 1 

and 

The f i n a l  r e s u l t s  of j3 /p are obtained by combining the  two blocks i n  E c  

Figure  36 and a r e  shown i n  Figure 37. Where 

L .d h- 

The actual laboratory results cf p /p and p /p are shown i n  
E e  P C  

Figure  33 and Figure 38, r e spec t ive ly ,  
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Figure 34q Root l o c w  plot of open loop, 



-32 -24 -16 -8 0 +8 

Figure 35. Expanded root locus p lo t  of load b ipo le .  
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Figure 360  Double block diagram. 
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Figure 37* Single block diagram. 
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A root  locus p l o t  of t he  open loop gives  the  design engineer a 

complete p i c t u r e  of the  closed loop root  v a r i a t i o n s  a s  a func t ion  of 

open loop gain.  The poles and zeros of the  r e f l e c t e d  load t r a n s f e r  

funct ion p / f l .  are  the  most c r i t i c a l  p a r t s  of t he  roo t  locus diagram. 
P 1  

The expanded root  locus p l o t  of t he  r e f l e c t e d  load is  shown i n  Figure 

35. 

closed loop roo t s  w i l l  be in  the  r i g h t  half  of the  "S" plane ,  causing 

the  TVC system t o  be unstable .  

One can see  t h a t  i f  an open loop ga in  is picked l a rge  enough, the 



APPENDIX B 

ASSUMPTIONS USED 

The fol lowing assumptions are pe r t inen t  t o  t h e  development of 

t he  TVC system mathematical model. 

1. The h y s t e r e s i s  of t he  servo-valve and its e f f e c t  on the  

system were neglected.  

2 ,  The compliances of t he  "0" r i n g s  were neglected.  

3, The e f f e c t  of leakage spools and ac tua to r  p i s ton  were 

assumed zero.  

4. E i o c i c i d  p o i t  para~tttrs were not included. 

5. The e f f e c t s  of lapping of valve (over-lapped on l i n e ,  or 

under-lapped) were neglected.  

6. The s i l t i n g  of valve was neglected.  

7 .  Breakway f o r c e s  and crushing power of valve were n o t  analyzed. 

8. Effects of contamination of hydraul ic  o i l  were omitted. 

9. The amount of a i r  and so f o r t h ,  i n  hydraul ic  o i l  were not  

cons idered. 

l o .  A i r  pockets i n  valve and hydraul ic  l i n e s  were neglected.  

11, Flow through the valve was analyzed i n  one d i r ec t ion .  

12. S ize  of w i r e  and arrangements of coi l  i n  torque motor w a s  

neglected.  ( R e l i a b i l i t y ,  e tc , )  

13. The type of metal f o r  magnet and s t r eng th  of magnets were 

no t  considered. (Assume one can get  des i red  r e s u l t s . )  
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14. The type of metal for f lapper  and f l exure  tuve was not  con- 

s idered. 

15. The non- l inea r i t i e s  i n  spr ings and feedback wires were 

omitted. 

16. The l o s s e s  i n  l i n e s  were assumed neglectable .  

17. The hydraul ic  pawer supply w a s  no t  analyzed. That i s ,  it 

w a s  assumed t h a t  one could g e t  the  des i red  pressures  and flow rates 

required.  


